
Graphs 11
Summary: Graphs and their associated algorithms are widely used for the process-
ing of problems in information science. A common problem for which graphs are
suited is finding the shortest path between two given points. Another problem is cal-
culating a minimal path that passes a number of points. This is an interesting prob-
lem for a carrier who has to deliver goods to a series of customers in different towns.
Another typical application is the maximization of message or material throughput
in a network. The components of the STL allow the construction of graphs for a
multitude of applications and of a library of suitable fast algorithms. This chapter
deals with the structure of a graph class on the basis of STL components and a
selection of algorithms (shortest paths, topological sorting).

A graph consists of a set of vertices and edges that connect two vertices. If an edge
is assigned a direction, the graph is called directed, otherwise it is undirected. Fig-
ure 11.1 shows one directed and one undirected graph with five vertices and five
edges each.

Figure 11.1: Directed and undirected graphs.

234 GRAPHS

If an edge leads from a vertex A to a vertex B, A is called the predecessor of B
and B is called the successor of A. A sequence of vertices e1, e2, ..., ek is called a
path if each vertex ej with j = 2, ..., k is successor of vertex ej−1.

There are different ways to represent a graph. The most frequently used represen-
tations are adjacency matrices (Latin adiacere = lie next to, border) and adjacency
lists. In the adjacency matrix, a ‘1’ at position (i, j) means that there is an edge from
vertex i to vertex j. Each edge can be equipped with numbers which represent costs
or distances. In this case, instead of the ‘1,’ the corresponding numbers are entered.
Furthermore, there must be one special number (normally 0) which means that no
connection exists between the two vertices.

The adjacency matrix of an undirected graph is symmetric with regard to
the main diagonal. Table 11.1 shows the adjacency matrices corresponding to
Figure 11.1.

Vertex 1 2 3 4 5 Vertex 1 2 3 4 5
1 0 1 1 1 0 1 0 1 1 1 0
2 0 0 1 0 0 2 1 0 1 0 0
3 0 0 0 0 0 3 1 1 0 0 0
4 0 0 0 0 1 4 1 0 0 0 1
5 0 0 0 0 0 5 0 0 0 1 0

Table 11.1: Adjacency matrices for directed and undirected graphs.

The second common representation using adjacency lists consists of a vector or
a list of all vertices, where for each vertex a sublist with all successive vertices exists
(Figure 11.2).

This kind of representation has the advantage that only memory which is actually
required is used and that, notwithstanding, the successors of each vertex can be found
very quickly. For this reason, we will use the list representation, albeit in a slightly
modified form.

Instead of taking lists for the references, as shown in Figure 11.2, the information
about successors and edge values is stored in a map map. The key to an edge value is
the number of a successive vertex. The advantage this gives over a list is that during
the construction or reading of the graph, we can be certain that no multiple edges
will exist. Thus, a vector element consists of a pair: the vertex and the set of its
successors.

There is an alternative to this construction: imagine a graph as a map in which
the set of successors and the edge values are accessed via a vertex, in analogy to the
simple model of the sparse matrix on page 211. If the vertices are of type string

and the edge values of type double, a graph type could be defined as follows:

typedef map<string, double> Successor;

typedef map<string, Successor> GraphType;

Now, the definition of vertices and edge values is very simple:

string vertex1("firstVertex");

string vertex2("secondVertex");

GRAPHS 235

5

4

4 •

3

2 1

1 2 3 4 •

-

-

- - -

5

4 5 •

3

2 3 •

1 2 3 4 •

-

-

- - -

3 •-

1- 2 •-

1- 5 •-

undirected

directed

Figure 11.2: Adjacency lists.

GraphType theGraph;

theGraph[vertex1][vertex2] = 4.568;

This solution is not favored for various reasons:

• In many instances, the information about whether a graph is directed plays a role
and should therefore be included.

• Inadvertent access to an undefined vertex with the [] operator leads to a new
vertex being created without an error message (see page 79).

• At each access to a vertex, a search process is carried out. The process is fast
(O(log N)), but a direct access is even faster.

• Sometimes an order is needed, for example, the order of vertices in a shortest
path. A vector of vertex numbers is a suitable and, above all, very simple tool for
this purpose. Solutions based on the GraphType of the above listing are more
expensive from a programming point of view.

The complexity of programs involving graphs is generally expressed in relation
to the number of vertices and edges.

236 GRAPHS

Edges without weighting?
Edges can be equipped with parameters to express distances or costs. In case no
parameters are needed, an empty class with a minimum set of operations is defined
as a placeholder:

struct Empty {

public:

Empty(int=0) {}

bool operator<(const Empty&) const { return true;}

};

inline std::ostream& operator<<(std::ostream& os,

const Empty&) {

return os;

}

inline std::istream& operator>>(std::istream& is, Empty&) {

return is;

}

With this class, it is possible to formulate a uniform class for graphs, together
with auxiliary routines for input and output, valid for graphs with and without
weighted edges.

11.1 Class Graph
According to Figure 11.2, the class Graph consists of a vector V of all vertices. As
the advanced private part shows, the additional information about whether the graph
is directed or not is present. An undirected graph is represented by the fact that for
each edge, a second edge exists in the opposite direction. This takes up memory for
what, in the final analysis, is redundant information, but has the advantage that each
successor of an arbitrary vertex can be reached quickly.

The class is equipped with various checking methods whose diagnostic messages
are output on the channel pointed to by the ostream pointer pOut.

template<class VertexType, class EdgeType>

class Graph {

public:

// public type interface
typedef std::map<int, EdgeType> Successor;

typedef std::pair<VertexType, Successor> vertex;

typedef checkedVector<vertex> GraphType;

typedef typename GraphType::iterator iterator;

typedef typename GraphType::const_iterator const_iterator;

private:

bool directed;

CLASS GRAPH 237

GraphType C; // container
std::ostream* pOut;

public:

/*The following constructor initializes the output channel with cerr. A parameter
must be specified as to whether the graph is directed or undirected, because this is
an essential property of a graph.

*/

Graph(bool g, std::ostream& os = cerr)

: directed(g), pOut(&os) {

}

bool isDirected() const { return directed;}

/*A graph is a special kind of container to which something can be added and whose
elements can be accessed. Therefore, in the following typical container methods,
their extents are limited to those needed for the examples. Thus, there is no method
for explicit removal of a vertex or an edge from the graph.

*/

size_t size() const { return C.size();}

iterator begin() { return C.begin();}

iterator end() { return C.end();}

// access to vertex i
vertex& operator[](int i) {

// the access is safe, because C is a checkedVector
return C[i];

}

// addition of a vertex
int insert(const VertexType& e);

// addition of an edge between e1 and e2
void insert(const VertexType& e1, const VertexType& e2,

const EdgeType& Value);

// addition of an edge between vertices no. i and j
void connectVertices(int i,int j,const EdgeType& Value);

/*The following methods are useful tools for displaying information on a graph and
checking its structure. These methods are described in detail in the next sections.

*/

// checking of a read data model
// output on the channel passed to check()
void check(std::ostream& = std::cout);

// determine the number of edges
size_t CountEdges();

238 GRAPHS

// determine whether the graph contains cycles
// and in which way it is connected
void CyclesAndConnectivity(std::ostream& = std::cout);

}; // Graph

The last method combines two tasks, because they can be carried out in a single run.
The terms are explained in the description of the methods.

11.1.1 Insertion of vertices and edges
To avoid ambiguities, a vertex is entered only if it did not previously exist. The
sequential search is not particularly fast; however, this process is needed only once
during the construction of the graph.

template<class VertexType, class EdgeType>

int Graph<VertexType,EdgeType>::insert(

const VertexType& e) {

for(int i = 0; i < size(); ++i)

if(e == C[i].first)

return i;

// if not found, insert:
C.push_back(vertex(e, Successor()));

return size()-1;

}

An edge is inserted by first inserting the vertices, if they are needed, and by
determining their positions. The edge construction itself is carried out by the func-
tion connectVertices(). It is passed the vertex numbers and, because there is no
search procedure, it is very fast.

template<class VertexType, class EdgeType>

void Graph<VertexType,EdgeType>::insert(

const VertexType& e1,

const VertexType& e2,

const EdgeType& Value) {

int pos1 = insert(e1);

int pos2 = insert(e2);

connectVertices(pos1, pos2, Value);

}

template<class VertexType, class EdgeType>

void Graph<VertexType,EdgeType>::connectVertices(

int pos1, int pos2, const EdgeType& Value) {

(C[pos1].second)[pos2] = Value;

if(!directed) // automatically insert opposite direction too
(C[pos2].second)[pos1] = Value;

}

CLASS GRAPH 239

11.1.2 Analysis of a graph
The method check() sets the output channel and calls all other checking methods.

template<class VertexType, class EdgeType>

void Graph<VertexType,EdgeType>::check(std::ostream& os) {

os << "The graph is ";

if(!isDirected())

os << "un";

os << "directed and has "

<< size() << " vertices and "

<< CountEdges()

<< " edges\n";

CyclesAndConnectivity(os);

}

Determining the number of edges
Determining the number of edges of a given graph is simple: all that is required is
to add the lengths of all adjacency lists. Undirected graphs are represented by two
opposed edges for each connected pair of vertices; thus, in this case, the sum is
halved.

template<class VertexType, class EdgeType>

size_t Graph<VertexType,EdgeType>::CountEdges() {

size_t edges = 0;

iterator temp = begin();

while(temp != end())

edges += (*temp++).second.size();

if(!directed)

edges /= 2;

return edges;

}

Cycles, connection, and number of components
A graph has a cycle if there is a path with at least one edge whose first node is
identical with the last node.

An undirected graph is connected if each vertex can be reached from each of
the other vertices. For directed graphs, a distinction is made between a strong and
a weak connection. A directed graph has a strong connection if a path exists from
each vertex to each of the other vertices, that is, all vertices are mutually reachable.
The connection is weak if an arbitrary vertex A is reachable from a vertex B, but not
vice versa.

A graph is not connected if it is composed of two or more non-connected com-
ponents. Figure 11.3 shows some examples.

240 GRAPHS

•

•

•

•j

Y

µ

®

strongly connected graph

one cycle

•
•

•
• •

weakly connected graph
*

*¾

not connected graph
two components

•

• •
•

•

•
•

•

•

w

Figure 11.3: Different types of graph.

CyclesAndConnectivity() works with a depth-first search. Starting with an
initial vertex, a successor is visited, then the successor of this successor, and so on,
until no further successor is found. Then the next successor of the initial vertex is
visited, applying the same process again. A breadth-first search, in contrast, pro-
cesses all successors of the initial vertex in the first step, without considering their
successors. Only then is the second level of successors tackled.

Unlike as suggested in Cormen et al. (1994), no recursion is employed because,
depending on the system, even smaller graphs can cause a stack overflow. For undi-
rected graphs, the stack depth corresponds to the number of edges + 1. In a user-
defined stack, only the necessary information is stored, not all sorts of data used for
function call management, such as local variables, return addresses, and so on.

template<class VertexType, class EdgeType>

void Graph<VertexType, EdgeType>::CyclesAndConnectivity(

std::ostream& os) {

int Cycles = 0;

int ComponentNumber = 0;

std::stack<int, std::vector<int> >

verticesStack; // vertices to be visited

/*To prevent multiple visits to vertices in possible cycles, which entails the risk of
infinite loops, the vertices are earmarked as having been visited or as finished
being processed. This is executed by the vector VertexState.

*/

CLASS GRAPH 241

// assign all vertices the state ‘not visited’
enum VertStatus {notVisited, visited, processed};

std::vector<VertStatus> VertexState(size(), notVisited);

/*If, starting from one vertex, an attempt is made to reach all other vertices, success
is not guaranteed in weakly or non-connected graphs. Therefore, each vertex is
visited. If it is found that a vertex has already been visited, it does not need to be
processed any further.

*/

// visit all vertices
for(size_t i = 0; i < size(); ++i) {

if(VertexState[i] == notVisited) {

ComponentNumber++;

// store on stack for further processing
verticesStack.push(i);

// process stack
while(!verticesStack.empty()) {

int theVertex = verticesStack.top();

verticesStack.pop();

if(VertexState[theVertex] == visited)

VertexState[theVertex] = processed;

else

if(VertexState[theVertex] == notVisited) {

VertexState[theVertex] = visited;

// new vertex, earmark for processed mark
verticesStack.push(theVertex);

/*If one of the successors of a newly found vertex bears the
visited mark, the algorithm has already passed this point
once, and there is a cycle.

*/

// earmark successors:
typename Successor::const_iterator start =

operator[](theVertex).second.begin();

typename Successor::const_iterator end =

operator[](theVertex).second.end();

while(start != end) {

int Succ = (*start).first;

if(VertexState[Succ] == visited) {

// someone’s been here already!
++Cycles;

(*pOut) << "at least vertex "

<< operator[](Succ).first

<< " lies in a cycle\n";

}

242 GRAPHS

/*Otherwise, the vertex has already been processed and
therefore should not be considered again, or it has not yet
been visited and is earmarked on the stack.

*/

if(VertexState[Succ] == notVisited)

verticesStack.push(Succ);

++start;

}

}

} // stack empty?
} // if(VertexState...

} // for() ...

/*Now we only need the output. In case of directed, weakly connected graphs, the
algorithm counts several components. To make the output conform to the above
definitions, although with a lesser information content, a distinction is made as to
whether the graph is directed or not.

*/

if(directed) {

if(ComponentNumber == 1)

os << "The graph is strongly connected.\n";

else

os << "The graph is not or weakly connected.\n";

}

else

os << "The graph has "

<< ComponentNumber

<< " component(s)." << std::endl;

os << "The graph has ";

if(Cycles == 0)

os << "no ";

os << "cycles." << std::endl;

}

Display of vertices and edges
The output operator is used to display the vertices and edges of a graph. The output
format corresponds to the format assumed by the routines of the next section.

template<class VertexType, class EdgeType>

std::ostream& operator<<(std::ostream& os, Graph<VertexType,

EdgeType>& G) {

// display of vertices with successors
for(size_t i = 0; i < G.size(); ++i) {

os << G[i].first << " <";

CLASS GRAPH 243

typename Graph<VertexType,EdgeType>::Successor::const_iterator

startN = G[i].second.begin(),

endN = G[i].second.end();

while(startN != endN) {

os << G[(*startN).first].first << ’ ’ // vertex
<< (*startN).second << ’ ’; // edge value

++startN;

}

os << ">\n";

}

return os;

}

11.1.3 Input and output tools
This section presents some tools that facilitate experimenting with algorithms in-
volving graphs. All auxiliary programs and sample data files are also available via
the Internet.

Reading data
Besides information on the connection of vertices, many graphs need only the la-
belling of vertices and in some cases the length of edges. A simple way of represent-
ing this information in a file is the following format:

vertex < successor1 cost1 successor2 cost2 ...>

If they are not needed, the costs can be omitted. A # character at the beginning
of a line starts a comment. Figure 11.4 corresponds to the simple file gra1.dat.

Figure 11.4: Directed graph. (Example taken from Maas (1994), by kind permission of Wißner
publishers.)

gra1.dat

v1

v2 <v1 v4 v5 >

244 GRAPHS

v3 <v2 v5 >

v4 <v2 >

cycle, loop to itself:

v5 <v5 v4 >

For the vertices, the graph needs only an identifier of type string. The edge
parameters can be of a numeric type or, as in this example, of type Empty (see page
236). A program for reading and documenting a graph may then look as follows:

int main() {

// no edge weighting, therefore type Empty:
br_stl::Graph<std::string, br_stl::Empty> V(true);

// true means directed

br_stl::ReadGraph(V, "gra1.dat"); // file gra1.dat see above

V.check(); // display properties

std::cout << V; // display of vertices with successors
}

The result of method check() is:

The graph is directed and has 5 vertices and 8 edges.
The graph is not connected or is weakly connected.
The graph has cycles.

The display of the vertices with successors corresponds to the format of the input
file. The function ReadGraph() is less interesting from an algorithmic point of
view; it can therefore be found in Section A.1.2. A second example is an undirected
graph with integer edge weights:

Graph<string,int> G(false); // undirected

This graph is described by the following file, in which slight errors have been
inserted for demonstration purposes:

gra2.dat

v0 <v1 1 v5 3 >

#double edge v2

v1 <v2 5 v2 9 v4 3 v5 2 v0 1 >

v2 <v1 5 v5 2 v4 2 v3 1 >

v3 <v2 1 v4 3>

v4 <v5 1 v1 3 v2 2 v3 3 >

v5 <v1 2 v2 2 v4 1 >

The result of the above program, including output of the corrected graph with
vertices and successors shown in Figure 11.5 is as follows:

The graph is undirected and has 6 vertices and 10 edges.
The graph has 1 component(s).
The graph has cycles.

DYNAMIC PRIORITY QUEUE 245

v0 <v1 1 v5 3 >
v1 <v0 1 v2 5 v4 3 v5 2 >
v2 <v1 5 v3 1 v4 2 v5 2 >
v3 <v2 1 v4 3 >
v4 <v1 3 v2 2 v3 3 v5 1 >
v5 <v1 2 v2 2 v4 1 v0 3 >

±°²¯ ±°²¯

±°²¯
±°²¯

±°²¯ ±°²¯
v0

v1 v2

v3

v5 v4

1

3

1

3

5

1

2 2

3

2

Figure 11.5: Undirected graph with weighted edges. (Example from Maas (1994).)

11.2 Dynamic priority queue
The STL provides the priority queue described in Section 4.3. For some purposes,
the functions provided are not sufficient. For example, it is not possible specifically
to change the priority of an element stored in a priority queue. Nor is removing and
reinserting it with changed priority possible.

Exactly this property, however, is required in the algorithm for the topological
sorting of a graph (see Section 11.3.2) and, furthermore, this property is advanta-
geous in an algorithm for finding the shortest path from one node to another. This
algorithm is described in Section 11.3.1. It could also be solved with a conventional
STL priority queue, but only with a relatively higher number of push calls.

Since the required priority queue allows modification of stored elements without
losing the priority queue property, this type will be called a ‘dynamic priority queue.’
It is intended as a special extension, so that it is not necessary to reproduce all the
methods of an STL priority queue, but only those needed in this application.

At first sight, it seems a good idea to exploit the existing STL implementation.
Two mechanisms are available:

• Inheritance
The container used in the STL priority queue is protected, so that it can be
accessed from within a derived class. However, the declaration would be very
complex: the elements would be of type pair<key, Index>, with the priority
being defined by the key key and the index representing a reference to the corre-
sponding node of the graph. At the declaration, not only the underlying container,
but also a comparison object Greater or something similar must be specified,
since smaller keys are to signify a higher priority.

Furthermore, the size of the additional code to be written is of the order of a whole
new class, as experiments which are not documented here have shown.

246 GRAPHS

• Delegation
It is conceivable to invent a class that uses an STL priority queue by making it an
attribute of this class and forwarding method calls to it. This possibility is ruled
out because, owing to its protected property, the container cannot be accessed,
but an access would be impossible to prevent.

Thus, it is more appropriate to write a special class. Even from the point of view
of total cost of design, coding and testing, it is more advantageous than copying and
complementing an existing implementation of a priority queue.

11.2.1 Data structure
The dynamic priority queue should allow an algorithm of the following kind:

1. Initialize the dynamic priority queue DPQ with a vector V which consists of the
elements 0 ... n − 1, and n = V.size() holds.

2. As long as the DPQ is not empty:

• determine from DPQ the element k of V that has the smallest value,

• read the corresponding position k from DPQ,

• modify one or more of the not yet read elements of V,

• update DPQ accordingly.

Elements of V should be modified only via a dynamic priority queue method,
because the information on the element to be modified must be kept. All this should
also be fast, which excludes linear search processes or a reinitialization of the dy-
namic priority queue at each modification. To satisfy these requirements, the data
structure shown in Figure 11.6 is chosen. In Figure 11.6, c is a vector of iterators
to the elements of the external vector V. After initialization, c is converted into a
heap with the property that c[0] now points to the smallest element inside V. After
the heap conversion, the order of elements in c no longer corresponds to the order
in V. To guarantee fast access in spite of this fact, an auxiliary array Indices is
created with the necessary information, that is, element i of the array contains the
address of array c, where the iterator to element i of vector V can be found (inverted
addressing). This allows fast changes without search processes:

// modify element V[i] from within the dynamic priority queue:

*c[Indices[i]] = newValue;

At each modification of the heap c, the auxiliary array must be updated, which
takes place in constant time.

11.2.2 Class dynamic_priority_queue
The heap inside the dynamic priority queue is indirect because it consists of iterators
whose ordering obviously does not correspond to the iterators themselves, but to the

DYNAMIC PRIORITY QUEUE 247

-

-

-

.

.

.

Heap cIndices

dynamic_priority_queue

external vector V

.

.

.

.

.

.

'

&

$

%

Figure 11.6: Internal data structure of the dynamic priority queue.

values pointed to by these iterators. The class IterGreater allows the creation of
suitable function objects:

// compares the associated values of passed iterators
template<class T>

struct IterGreater {

bool operator()(T x, T y) const { return *y < *x;}

};

It should be noted that only the < operator is needed for the template data type *T
and that the required relation is created by swapping the arguments. The class tem-
plate dynamic_priority_queue needs only the type key_type of the elements
of the external vector, which represent the priorities.

// include/dynpq.h
#ifndef DYNPQ_H

#define DYNPQ_H

#include<checkvec.h>

#include<algorithm>

#include<showseq.h>

namespace br_stl {

template <class key_type>

class dynamic_priority_queue {

248 GRAPHS

public:

// public type definitions
typedef std::vector<key_type>::size_type size_type;

typedef std::vector<key_type>::difference_type

index_type;

// constructor
dynamic_priority_queue(std::vector<key_type>& v);

// change a value at position at
void changeKeyAt(index_type at, key_type k);

// index of the smallest element (= highest priority)
index_type topIndex() const { return c.front()-first;}

// value of the smallest element (= highest priority)
const key_type& topKey() const { return *c.front(); }

void pop(); // remove smallest element from the heap

bool empty() const { return csize == 0;}

size_type size() const { return csize;}

private:

checkedVector<index_type> Indices; // auxiliary vector
typedef typename std::vector<key_type>::iterator

randomAccessIterator;

checkedVector<randomAccessIterator> c; // heap of iterators
randomAccessIterator first; // beginning of the external vector
IterGreater<randomAccessIterator> comp; // comparison object
index_type csize; // current heap size

// heap update (see below)
void goUp(index_type);

void goDown(index_type);

};

}

The class definition is followed by the implementation together with explana-
tions about the way of functioning. In the initialization list, the vectors Indices

and c are created, among others. Subsequently, the addresses of all the elements of
the external vector are entered and a heap is generated. An entry of the auxiliary ar-
ray Indices is simply the difference between the address stored in c and the starting
address of the vector V.

template <class key_type>

dynamic_priority_queue<key_type>::

dynamic_priority_queue(vector<key_type>& v)

: Indices(v.size()), c(v.size()), first(v.begin()),

csize(v.size()) {

DYNAMIC PRIORITY QUEUE 249

// store iterators and generate heap
for(index_type i = 0; i< csize; ++i)

c[i] = v.begin() + i;

make_heap(c.begin(), c.end(), comp); // STL

// construct index array
for(index_type i = 0; i< csize; ++i)

Indices[c[i] - first] = i;

}

The method changeKeyAt() allows a value of the external vector at position
at to be changed without violating the heap property. This process is of complexity
O(log N) and therefore very fast. N is the number of elements still present in the
heap. The main cost lies in the procedures for the reorganization of the heap which,
however, never require more steps than log N , the height of the heap.

The theory is that, if a modified element has become greater (= ‘heavier’), then
this element is allowed to sink down in the heap until it has reached its proper posi-
tion. Vice versa, a ‘lighter’ element should rise by a corresponding amount towards
the top.

template <class key_type>

void dynamic_priority_queue<key_type>::

changeKeyAt(index_type at, key_type k) {

index_type idx = Indices[at];

assert(idx < csize); // value still present in the queue?

if(*c[idx] != k) { // in case of equality, do nothing
if(k > *c[idx]) {

*c[idx] = k; // enter heavier value
goDown(idx); // reorganize heap

}

else {

*c[idx] = k; // enter lighter value
goUp(idx); // reorganize heap

}

}

}

The method call goUp(idx) causes an element to rise at position idx. Figure
11.7 shows, from top to bottom, the effect of changeKeyAt() and goUp(), starting
with an arbitrary external vector whose ninth element is set to 0. The lighter element
at idx rises through gradual sinking of the heavier predecessors and entry at the
freed position.

template <class key_type>

void dynamic_priority_queue<key_type>::goUp(

index_type idx) {

index_type Predecessor = (idx-1)/2;

250 GRAPHS

randomAccessIterator temp = c[idx];

/*In the figure, the process is exemplified by swapping the values of predecessor and
successor. In the following program segment, however, in order to save unneces-
sary assignments, entry of the element temp (0 in the figure) is postponed until
all the necessary exchange operations have been carried out.

*/

while(Predecessor != idx

&& comp(c[Predecessor], temp)) {

c[idx] = c[Predecessor];

Indices[c[idx]-first] = idx;

idx = Predecessor;

Predecessor = (idx-1)/2;

}

c[idx] = temp;

Indices[c[idx]-first] = idx;

}

The method goDown() functions correspondingly. The heavy element at idx
sinks down through gradual rising of the lighter successor and entry at the freed
position.

template <class key_type>

void dynamic_priority_queue<key_type>::goDown(

index_type idx) {

index_type Successor = (idx+1)*2-1;

if(Successor < csize-1

&& comp(c[Successor], c[Successor+1]))

++Successor;

randomAccessIterator temp = c[idx];

while(Successor < csize && comp(temp, c[Successor])) {

c[idx] = c[Successor];

Indices[c[idx]-first] = idx;

idx = Successor;

Successor = (idx+1)*2-1;

if(Successor < csize-1

&& comp(c[Successor], c[Successor+1]))

++Successor;

}

c[idx] = temp;

Indices[c[idx]-first] = idx;

}

The method pop() removes the topmost element from the heap. This is done by
moving the last element to the top and blocking the freed position with --csize.
Subsequently, the element sinks down to its proper position.

DYNAMIC PRIORITY QUEUE 251

6 5 38 8 40 26 58 24 75 99 32 49 15 74 external vector

internal heap

6 5 38 8 40 26 58 24 75 0 32 49 15 74 changeKeyAt(9, 0)

template <class key_type>

void dynamic_priority_queue<key_type>::pop() {

// overwrite iterator at the top with the address of the last element
c[0] = c[--csize];

// enter the new address 0 at the position belonging
// to this element in the auxiliary array
Indices[c[0]-first] = 0;

// let the element at the top sink to the correct position corresponding to its weight
goDown(0);

252 GRAPHS

Figure 11.7: Effect of changeKeyAt() and goUp().

}

#endif

Example
A program fragment shows the application:

// excerpt from k11/dynpq/maindpq.cpp
br_stl::checkedVector<double> V(8);

//... assign here values to the elements V[i]

br_stl::dynamic_priority_queue<double> DPQ(V);

// change value V[3]; correct insertion into DPQ is carried out automatically
DPQ.changeKeyAt(3, 1.162);

// outputting and emptying by order of priority
while(!DPQ.empty()) {

std::cout << "index: " << DPQ.topIndex()

<< " value: " << DPQ.topKey() << std::endl;

DPQ.pop();

}

11.3 Graph algorithms
There are vast numbers of algorithms for graphs. Here, only some of these are pre-
sented to show how such algorithms can be implemented using the STL and its
techniques with the extensions of the previous sections.

Many problems involving graphs, such as finding the shortest path between two
points or determining an optimal travelling route, involve specifying locations. For
such problems, a vertex type suggests itself which contains the location’s coordinates
and a denomination. A suitable class for this is Place:

// include/place.h
#ifndef PLACE_H

#define PLACE_H

GRAPH ALGORITHMS 253

#include<cmath>

#include<string>

namespace br_stl {

class Place {

public:

Place() {};

Place(long int ax, long int ay,

std::string& N = std::string(""))

: x(ax), y(ay), Name(N) {

}

const std::string& readName() const { return Name;}

unsigned long int X() const { return x;}

unsigned long int Y() const { return y;}

bool operator==(const Place& P) const {

return x == P.x && y == P.y;

}

// for alphabetical ordering
bool operator<(const Place& P) const {

return Name < P.Name;

}

private:

long int x, y; // coordinates
std::string Name; // identifier

};

Sometimes additional information, such as the number of inhabitants of a place,
is required and can easily be added. The distance between two places can easily be
calculated. The corresponding function DistSquare() is formulated as a separate
function, because often only the result of a comparison of distances is of interest. To
carry out the comparison, the squares of the distances are sufficient, and calculation
of the square root sqrt() can be omitted.

inline unsigned long int DistSquare(const Place& p,

const Place& q) {

long int dx = p.X()-q.X();

long int dy = p.Y()-q.Y();

// (arithmetic overflow with large numbers is not checked)
return dx*dx + dy*dy;

}

inline double Distance(const Place& p, const Place& q) {

return std::sqrt(double(DistSquare(p,q)));

}

254 GRAPHS

The output operator displays the name of the place and allows a simpler notation
than the detour via readName().

inline std::ostream& operator<<(std::ostream& os,

const Place& S) {

return (os << S.readName());

}

} // namespace br_stl
#endif

11.3.1 Shortest paths
Here, the problem is to find the shortest path between two points of a graph. Probably
the best known algorithm for this purpose is Dijkstra’s algorithm. It uses the dynamic
priority queue of Section 11.2. Figure 11.8 shows an undirected graph with 100
places, in which the shortest path between point 0 and point 63 is highlighted.

Figure 11.8: Graph with shortest path between two points.

The graph in Figure 11.8 was created with a number of small auxiliary pro-
grams. The function create_vertex_set() (Section A.1.3) can be used to gener-
ate a number of vertices with random coordinates within a given frame. The function
connectNeighbors() (Section A.1.4) connects neighboring vertices of an undi-
rected graph, and createTeXfile() (Section A.1.5) takes the graph and generates
a file to be read into the LATEX typesetting program used to typeset this book.

How should the Dijkstra() algorithm be used? In the following example, a
graph G with random coordinates is constructed, but any other graph would do as
well:

// excerpt from k11/dijkstra/mainplace.cpp
#include<gra_algo.h> // contains Dijkstra()
#include<gra_util.h> // auxiliary functions from Appendix A

using namespace std;

int main() {

size_t Count = 100;

br_stl::Graph<br_stl::Place,float> G(false); // undirected
br_stl::create_vertex_set(G, Count, 12800, 9000); // range

GRAPH ALGORITHMS 255

br_stl::connectNeighbors(G);

/*The Dijkstra() function must be passed the graph, a vector of distances, and
a vector of the predecessors, which are modified by the algorithm. The distance
type must match the edge parameter type of the graph.

*/

vector<float> Dist;

vector<int> Pred;

int start = 0; // starting point 0

br_stl::Dijkstra(G, Dist, Pred, start);

/*The last argument is the starting point which can be any vertex between no.
0 and no. (G.size()-1). After the call, the distance vector contains the
length of the shortest paths from each point to the starting point. Dist[k]
is the length of the shortest possible path from vertex no. k to vertex no. 0.
Dist[StartingPoint] is 0 by definition.

*/

// output
cout << "shortest path to "

<< G[start].first << ":\n";

cout << "predecessor of: is: "

"distance to [indices in ()]:\n";

for(size_t i = 0; i < Pred.size(); ++i) {

cout << G[i].first

<< ’(’ << i << ") ";

if(Pred[i] < 0)

cout << "-"; // no predecessor of starting point
else

cout << G[Pred[i]].first;

cout << ’(’ << Pred[i] << ’)’;

cout.width(9);

cout << Dist[i] << endl;

}

}

The predecessor vector contains the indices of the predecessors on the path to-
wards the starting point. Pred[StartingPoint] is undefined. If the starting vertex
is 0, the predecessor and distance vectors of the graph in Figure 11.9 have the values
shown in Table 11.2. It corresponds to the output of the above program, except that
the table shows only the vertex numbers and not the vertex names.

The shortest path from vertex v3 to vertex v0 is 6 units long and leads through the
vertices v2 (=Pred[3]) and v5 (=Pred[2]). The predecessor of 5 is 0. With this,

256 GRAPHS

±°²¯ ±°²¯

±°²¯
±°²¯

±°²¯ ±°²¯
v0

v1 v2

v3

v5 v4

1

3

1

3

5

1

2 2

3

2

Figure 11.9: A shortest path.

i Pred[i] Dist[i]

0 undefined 0
1 0 1
2 0 3
3 2 5
4 1 4
5 3 6

Table 11.2: Example of predecessor and distance vectors.

the target is reached. There can be several equally short paths. The corresponding
output of the program is:

shortest path to v0:

Predecessor of: is: Distance to [indices in ()]:
v0(0) –(–1) 0
v1(1) v0(0) 1
v5(2) v0(0) 3
v2(3) v5(2) 5
v4(4) v1(1) 4
v3(5) v2(3) 6

How does the algorithm find the shortest path between two points? This algo-
rithm is extensively described in several textbooks, e.g. Cormen et al. (1994). There-
fore only a brief outline is given. A preliminary hint: below, the distance vector is
to be initialized with the value ∞, which is ‘approached’ by the maximum value
possible for the data type in question:

numeric_limits<aScalarType>::max() // maximum value

aScalarType is one of the basic data types int, long, double, and so on. The
class numeric_limits is declared in the header <limits>.

The inclusion of the include files is followed by the definition of the Dijkstra()
function which is passed the graph Gr, the two vectors of distances and predecessors,
and the starting point of the search.

// include/gra_algo.h
#ifndef GRAPH_ALGORITHMS_H

GRAPH ALGORITHMS 257

#define GRAPH_ALGORITHMS_H

#include<dynpq.h>

#include<graph.h>

#include<limits>

#include<iostream>

namespace br_stl {

template<class GraphType, class EdgeType>

void Dijkstra(GraphType& Gr, std::vector<EdgeType>& Dist,

std::vector<int>& Pred, int Start) {

/*The algorithm proceeds in such a way that the distances are estimated and the
estimates gradually improved. The distance to the starting point is known (0). For
all other vertices, the worst possible estimate is entered.

*/

Dist = std::vector<EdgeType>(Gr.size(),

std::numeric_limits<EdgeType>::max());

// as good as ∞
Dist[Start] = (EdgeType)0;

/*The predecessor vector too is initialized with ‘impossible’ values (–1). Subse-
quently, a dynamic priority queue is defined and initialized with the distance vec-
tor:

*/

Pred = std::vector<int>(Gr.size(), -1);

dynamic_priority_queue<EdgeType> Q(Dist);

/*In the next step, all vertices are extracted one by one from the priority queue,
and precisely in the order of the estimated distance towards the starting vertex.
Obviously, the starting vertex is dealt with first. No vertex is looked at twice.

*/

int u; // vertex with minimum
while(!Q.empty()) {

u = Q.topIndex(); // extract vertex with minimum
Q.pop();

/*Now, the distance estimates for all neighboring vertices of u are updated. If
the previous estimate of the distance between the current neighbor of u and
the starting vertex (Dist[Neighbor]) is worse than the distance between
vertex u and the starting vertex (Dist[u]) plus the distance between u and
the neighboring vertex (dist), the estimate is improved.

This process is called relaxation. In this case, the path from the starting vertex
to the neighbor cannot be longer than (Dist[u] + dist). In this case, u
would have to be regarded as the predecessor of the neighbor.

*/

258 GRAPHS

// improve estimates for all neighbors of u
typename GraphType::Successor::const_iterator

I = Gr[u].second.begin();

while(I != Gr[u].second.end()) {

int Neighbor = (*I).first;

EdgeType dist = (*I).second;

// relaxation
if(Dist[Neighbor] > Dist[u] + dist) {

// improve estimate
Q.changeKeyAt(Neighbor, Dist[u] + dist);

// u is the predecessor of the neighbor
Pred[Neighbor] = u;

}

++I;

}

}

}

// ... further graph algorithms (see later)
} // namespace br_stl
#endif

The loop cycles through all vertices. If the number of vertices is denoted by NV

and the number of edges by NE, the complexity of the algorithm can be estimated
as follows on the basis of the individual procedures:

1. NV removals from the queue.

2. The removal (pop()) is of complexity O(log NV).

3. Relaxation is carried out corresponding to the number of edges of a vertex. Since
each vertex is looked at only once, its edges too are looked at only once. There-
fore, a total of max. NE edges are relaxed.

4. The relaxation of an edge is of complexity O(log NV). The cost derives from
reorganization of the heap in the method changeKeyAt().

The removals ‘cost’ a total of O(NV log NV), and the cost of all relaxations
totals O(NE log NV). Thus, the complexity of the whole algorithm is O((NV +
NE) log NV). In Cormen et al. (1994) it is demonstrated that the path found really
is the shortest one. Obviously, there can be several equally short paths in a graph.
Which of these is chosen depends on the arrangement of vertices and edges.

11.3.2 Topological sorting of a graph
Topological sorting is a linear ordering of all vertices of a graph in such a way that
in the ordering each successive vertex appears after its predecessor.

GRAPH ALGORITHMS 259

One example is the references in an encyclopedia, in which a term is explained
with the aid of other terms. A topological order of the terms would be an order in
which references are made only to already defined terms.

A Gantt chart, in which it is determined which activity must be terminated before
another one can be started, also contains topological sorting. Thus, when building a
house, painters and decorators can start only when electricians and joiners have fin-
ished. These, in turn, can start only after the builders have erected the walls. A graph
that describes such dependencies must not contain cycles. In other words, it cannot
be that the builders can only erect the walls after painters and electricians have fin-
ished their work and that these, in turn, wait for the builders.

Some things can be done in arbitrary order, for example wall painting and in-
stalling the central heating boiler. Thus, different topological sortings of a graph are
possible. A directed acyclic graph is often abbreviated to dag or DAG. Figure 11.10
shows a DAG which is not yet sorted topologically. The graph is defined by the
following file with the structure known from page 243:

topo.dat

a < l e f >

b < c e i >

c < f g j >

d < c g n >

e < h >

f < i m >

g < f >

h

i < h >

j < l k >

k < n >

l

m < j >

n

In the figure, activity a must be carried out before activity e. Activities h, l, and n
are final activities; they have no successors and therefore stand at the end of the topo-
logical sorting shown in Figure 11.11. The dashed lines are redundant because the
vertices can be reached via other edges. The essential difference is that all direction
arrows point to the right. Vertices of the graph that have no topological precedence
over each other are drawn more or less above each other. All vertices that have no
predecessor are on the extreme left.

The algorithms in the quoted literature mostly proceed by way of a depth first
search (Cormen et al. (1994)) or by complicated list structures which are constructed
for the analysis (Wirth (1979)). In contrast to these, a method will be described
which successively reads those vertices from a dynamic priority queue that have
no predecessors, and then removes these vertices by updating the predecessor num-
bers of the other vertices. This method has the advantage of being very compact and
very fast. Firstly, let us look at the program that calls the topological sorting:

260 GRAPHS

Figure 11.10: Directed acyclic graph.

Figure 11.11: Topologically sorted DAG.

// k11/toposort/main.cpp : topological sorting
#include<gr_input.h>

#include<gra_algo.h> // contains topoSort(), see below
using namespace std;

int main() {

br_stl::Graph<string, br_stl::Empty> G(true); // directed
br_stl::ReadGraph(G, "topo.dat");

/*After sorting, the vector Ordering passed as argument contains the indices of
the graph’s vertices.

*/

GRAPH ALGORITHMS 261

vector<int> Ordering;

if(br_stl::topoSort(G, Ordering)) { // sort
for(size_t i = 0; i < G.size(); ++i)

cout << G[Ordering[i]].first << ’ ’;

cout << endl;

}

else cout << "Error in the graph!\n";

}

The output of the program corresponds to the representation in Figure 11.11:

d b a c e g f i m j k h n l

The algorithm proper follows. The function returns false if the graph contains
one or more cycles. In such a case, the result is meaningless.

// File include/gra_algo.h (continued from page 258)
template<class GraphType>

bool topoSort(GraphType& G, std::vector<int>& Result) {

assert(G.isDirected()); // let’s play it safe!
int ResCounter = 0;

Result = std::vector<int>(G.size(), -1);

/*The vector Result takes the indices of the correspondingly distributed vertices.
The counter ResCounter is the position in Result where the next entry be-
longs.

*/

checkedVector<int> PredecessorCount(G.size(), 0);

int VerticesWithoutSuccessor = 0;

/*For each vertex, the vector PredecessorCount counts how many prede-
cessors it has. There are vertices without successors, whose number is kept in
VerticesWithoutSuccessor. Furthermore, the algorithm remains stable
if the precondition that a graph must not have cycles is violated. The variable
VerticesWithoutSuccessor is used to recognize this situation (see below).

*/

for(size_t iv = 0; iv < G.size(); ++iv) {

if(G[iv].second.size() > 0) { // is predecessor

typename GraphType::Successor::const_iterator I =

G[iv].second.begin();

while(I != G[iv].second.end())

// update number of predecessors
++PredecessorCount[(*I++).first];

}

else { // Vertex is no predecessor, that is, without successor

// an excessively high number of predecessors is used
// for later recognition

262 GRAPHS

PredecessorCount[iv] = G.size(); // too many!
++VerticesWithoutSuccessor;

}

}

/*The dynamic priority queue is initialized with the vector of numbers of predeces-
sors. At the beginning of the queue we find those vertices that have no predecessors
and therefore are to be processed next. Only the vertices which are predecessors
themselves, that is, that have successors, are processed. The subsequent loop is
terminated when the queue contains only successor vertices which themselves are
not predecessors. Their number of predecessors can never be 0 because earlier
they were initialized with too high a value.

*/

dynamic_priority_queue<int> Q(PredecessorCount);

// process all predecessors
while(Q.topKey() == 0) {

// determine vertex with predecessor number 0
int oV = Q.topIndex();

Q.pop();

Result[ResCounter++] = oV;

/*To ensure that this vertex without predecessors oV is no longer considered in
the next cycle, the number of predecessors of all its successors is decreased
by 1.

*/

typename GraphType::Successor::const_iterator

I = G[oV].second.begin();

while(I != G[oV].second.end()) {

// decrease number of predecessors with
// changeKeyAt(). Do not change directly!
int V = (*I).first;

Q.changeKeyAt(V, PredecessorCount[V] -1);

++I;

}

}

/*Now, all vertices without successors are entered. As a countercheck, the variable
VerticesWithoutSuccessor is decreased. If the queue contains too many
vertices, an error message is displayed.

*/

while(!Q.empty()) {

Result[ResCounter++] = Q.topIndex();

Q.pop();

--VerticesWithoutSuccessor;

}

GRAPH ALGORITHMS 263

if(VerticesWithoutSuccessor < 0)

std::cerr << "Error: graph contains a cycle!\n";

return VerticesWithoutSuccessor == 0;

}

The error occurs when the graph contains at least one cycle, since in the cy-
cle itself there can never be a vertex without a predecessor. In that case, more
vertices are caught in the queue than there should be according to the number
VerticesWithoutSuccessor counted at the beginning.

Complexity
For an estimate of the complexity, the following activities are relevant, where NV

is the number of vertices and NE the number of edges. An auxiliary measure n =
NE/NV is the average number of successors and predecessors per vertex:

1. Initialization of the vector with numbers of predecessors: NV + NE.

2. Initialization of the dynamic priority queue: NV.

3. while loops: in all loops, each vertex is treated exactly once (NV) and each
edge (successor vertex) depending on the number of predecessors and successors
(nNE). Each ‘treatment’ means removal from the queue (log NV) or modification
of the queue with changeKeyAt() (again log NV).

The dominating part is NV log NV + nNE log NV. If the number of vertices and
edges is approximately the same, the cost to be expected is O(NV log NV). The
upper limit for the number of edges, however, is NV(NV − 1)/2 (every vertex is
connected with every other vertex), so that the complexity is O(N2

V log NV).

Exercise
11.1 What happens if you run the program on page 260 with a file topo.dat in
which the line j < l k > is substituted with j < f l k >?

